Semi-quantitative modeling in systems biology: the Petri net formalism

Prof. Dr. Ina Koch Goethe-Universität Frankfurt a. M.

e:Med Project Group Modeling of Disease Processes Online Seminar Series **07 December 2022** www.sys-med.de

GEFÖRDERT VOM

Semi-quantitative modeling in systems biology: the Petri net formalism

Ina Koch Molecular Bioinformatics Institute of Computer Science Goethe University Frankfurt am Main

ina.koch@bioinformatik.uni-frankfurt.de www.bioinformatik.uni-frankfurt.de

December 7th 2022 E:Med Online Seminar : Modeling approaches for disease processes

Outline

- Systems biology and data
- Introduction to Petri nets
- Signal transduction pathways
- Other Petri net projects
- Take-home messages

To model disease processes, we have to understand the function of proteins and their interplay in the biological system

Challenges in systems biology

- Incomplete data
- Different time points and different locations in the cell *

✤ Different Data determine the choice of the modeling approach Different experiments under varying experimental conditions

- Different scales: genomics, transcriptomics, proteomics, ** metabolomics, interactomics, imaging, ...

Petri nets

- Mathematical theory that describes systems with concurrent processes
- Developed by Carl Adam Petri (1926 2010)
- Basic definitions in his PhD thesis at University of Technology Darmstadt in 1962
- Many applications in computer communication, operating systems, software dependencies, manufacturing systems, business processes
- Carl Adam Petri mentioned application to chemical networks already in 1976
- First paper on biochemical application by Venkatramana Reddy et al. in 1993
- Applications to metabolic networks, signal transduction pathways, gene regulatory networks using discrete, stochastic and continuous methods

Molecular Petri nets

Why Petri nets?

Insufficient kinetic data, but many qualitative data from "omics" Dynamic's prediction becomes possible without knowing kinetic parameters

Analysis:model verification, reduction, decomposition,invariant analysis, reachability analysis, liveness

Simulation: token game, synchronous, asynchronous, deadlocks, token accumulation

Strengths:

- ✤ Different models of abstraction (Boolean, discrete untimed & timed, stochastic, continuous) → hybrid models
- Flexibility in changing firing concepts (e.g., Fuzzy logics)
- Intuitive visualization and simulation combined with the analysis and simulation
- Knockout analysis

Petri net analysis at steady state

- Minimal place invariants (PIs)
 substance conservations
- Minimal transition invariants (TIs)
 basic functional processes
 cyclic firing sequences to the initial state
 Lautenbach (1973) GMD Report No. 82
 correspond to elementary modes
 Schuster et al. (1993) Second Gauss Symposium
- ✤ In silico knockout

knockout matrix

Scheidel et al. (2016) PLoS Computational Biology

Example: transition invariants

$$TI_1 = (t_1, t_{2_1})$$

$$TI_2 = (t_3, t_4)$$

Ina.koch@bioinformatik.uni-frankfurt.de

Functionality in signaling pathways

TNFR-mediated NF-κB activation

Ina.koch@bioinformatik.uni-frankfurt.de

Motivation for Manatee invariants

- Observation: transition invariants (TIs) are unable to represent signal flows from the receptor to the cell response in networks with cycles
- Aim: mathematical concept to compute all signal flows from receptor activation to the cell response
- Method: linear combination of TIs to get Manatee invariants (MIs) based on feasible TIs

Sackmann et al. (2006) BMC Bioinformatics

Manatee invariants

Aim: Prediction and characterization of complete signal flows

 \rightarrow from signal reception to cell response

- Method: Formation of linear combinations of feasible, minimal transition invariants, preserving the properties of feasibility and CTI.
- Assumption: feasible transition invariants represent complete signal flows in the Petri net

Amstein et al. (2017) BMC Systems Biology

Realizable TIs vs feasible TIs

 $m_0 = (0, 0)$: $TI_1 = (t_1, t_2)$ $TI_2 = (t_3, t_4)$ realizable, not feasible $m_0 = (1, 0)$: $TI_1, TI_2 \rightarrow$ realizable, feasible

Transition invariants: $TI_1 = (\text{syn S}, \text{bin}, \text{rel}, \text{deg P})$

The TI_1 -induced network

Transition invariants:

 $TI_1 = (\text{syn S, bin, rel, deg P})$ $TI_2 = (\text{syn E, deg E})$

The *TI*₂-induced network

Transition invariants: $TI_1 = (\text{syn S, bin, rel, deg P})$ $TI_2 = (\text{syn E, deg E})$

- Both processes are biologically interrelated
- TI_1 is dependent on TI_2

For $m_0 = (0,0,0,0)$:

- ✤ TI_1 = realizable, not feasible
- ✤ TI_2 = realizable and feasible

Place invariant analysis

Transition invariants: $TI_1 = (\text{syn S, bin, rel, deg P})$ $TI_2 = (\text{syn E, deg E})$

 TI_1 – induced network

 TI_2 – induced network

PI $(TI_1) = (E, E:S \text{ complex}) \rightarrow \text{not feasible}$

syn E deg E

PI-free \rightarrow feasible

Construction of Manatee invariants

- ✤ Determine cycles that cause disruptions in signal flows:
 → PIs in TI-induced networks
- ✤ Find processes that overlap with the cycles:
 →TIs that serve places of the PIs in TI-induced networks
- Combine interrelated processes:

 \rightarrow Construction of all possible linear combinations of TIs

✤ MI-induced networks are PI-free
 → PI-free in contrast to the complete PN

Construction of Manatee invariants

Transition invariants: $TI_1 = (\text{syn S, bin, rel, deg P})$ $TI_2 = (\text{syn E, deg E})$

Manatee invariants $MI_1 = TI_1 + TI_2$ $MI_2 = TI_2$

PI-free MI-induced network	feasible
yes	yes
yes	yes

Manatee invariants are linear combinations of TIs that induce PI-free networks!

Signal flows described by Manatee invariants

Ina.koch@bioinformatik.uni-frankfurt.de

Motivation and aim of the work

Joint project with physicians from Goethe-University Frankfurt am Main

Simone Fulda

Ivan Dikic

Leonie Amstein

- Knowledge compilation into a mathematical model
- Computational verification of the model
- Role of RIP1 and other proteins as molecular switch between apoptosis and necroptosis

Amstein et al. (2017) BMC Systems Biol

The TNFR1 signal transduction pathway

The Petri net of the TNFR1 signaling pathway

Manatee invariants predict signal transduction

Pathway classification based on MIs

- Classification von 214 Manatee invariants according to their cellular outcome
- Robust survival response: in agreement with experimental observations Ting & Bertrand (2016) Trends in Immunology

In silico knockouts

- Allow for perturbation analyses based on transition and place invariants
- Matrix representation: illustrates the effects of (single as well as multiple) knockouts of each network component
- The software isiKnock combines the concept of in silico knockouts with the computation of Manatee invariants

isiKnock v1.0 🗕 🗆 💌	💐 Knockout Viewer - PN_man_pap (Manatee 🗕 🗖 💌	
😡 Help	Export View 😗 Help	
Load file Filenams: PHL,man_pap.pet No. of reactions: 31 No. of species: 29 isiKnock	:RIP1:TRAF2:cIAPs :RIP1:TRAF2 :RIP1 :RIP1 :RP1 :RP1 :RP1 :RP1 :RP1 :RP1 :RP1 :R	Scheidel <i>et al.</i> (2016) <i>PLoS Computational Biology</i> Amstein <i>et al.</i> (2017) <i>BMC Systems Biology</i> Hannig <i>et al.</i> (2018) <i>Bioinformatics</i>
Options:		
Manatee invariants (fast search)	5555 555	
Transition invariants	EEEE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
Integrate output reactions		
Include species of place invariants		
Save invariants		
Knocked out reactions Species		
	SynIKK	
Bin12		
🔲 Bin2	Synter AD	
Bn3 DLB_n	SynRiP1 🕘 🔵 🛑 🛑 🕘 🔘 🔘 🔘 🛑 🛑 🛑	
Bin4 2 B_p Bin5 2 NF B	SynTAK1	
	SynTNF	Unaffected places Affected places
Select all reactions Select all species		
Select all syntheses/productions		
Create knockout matrix		rankfurt.de 30

In silico knockouts of the TNFR1 Petri net

- Knockout matrix based on Manatee invariants
- 20 in silico knockouts,
 2 therapies
 (SMAC mimetic,
 - cycloheximide), 21 complexes
- Identification of knockouts that overcome the robust survival response
- Identification of the most important check points of the *molecular switch*

Unaffected places

Affected places

Take-home messages

- Petri net formalism is useful for many applications in biology and medicine at different levels of abstraction
- Critical points are incomplete and diverse data
- We have to understand the experiments and biological processes
- Transition invariants are useful for dynamic and functional pathway analysis
- Manatee invariants define complete signaling pathways, from receptor activation to the cell response
- The *in silico* knockout analysis can be used for model verification and generation of new hypotheses
- Try to interpret and visualize the results

Comparison and cross-talk of the canonical and non-canonical NF-kB pathways

Xenophagy in epithelial HeLa cells after Salmonella Typhimurium infection

Jennifer Hannig

Ivan Dikic

Classical Petri netStochastic Petri net

Hannig *et al.* (2018) *Bioinformatics* Scheidel *et al.* (2016) PLoS Computational Biology

Agent-based model of *Salmonella* movement on the cell surface

Jennifer Hannig

Ina.koch@bioinformatik.uni-frankfurt.de

unpublished

A Petri net model of the human lymph node

Martin-Leo Hansmann

unpublished

A Petri net model of the human lymph node

Based on the tremendous knowledge of pathologists and on own experimental 2D and 3D data Ina.koch@bioinformatik.uni-frankfurt.de

Acknowledgments & Support

University Jena Prof. Dr. Stefan Schuster

University Konstanz Prof. Dr. Falk Schreiber

Humboldt University Berlin

Prof. Dr. Wolfgang Reisig

Goethe University Frankfurt

Prof. Dr. Martin-Leo Hansmann Prof. Dr. Ivan Dikic Prof. Dr. Simone Fulda

HESSEN

Ina.koch@bioinformatik.uni-frankfurt.de

Master student Bachelor student PhD student Postdoc Administration Alumni

39

Thank you!

Ina.koch@bioinformatik.uni-frankfurt.de

System's invariants

Transition Place	r ₁	r ₂	r _{3f}	r _{3b}
С	-2	-1	-1	+1
0 ₂	-1	-1	0	0
CO	+2	0	+2	-2
CO ₂	0	+1	-1	+1
init	0	0	0	0

P-invariants

$-2 x_1$	$-1 x_2 + 2$	2 x ₃	= 0
$-1 x_1$	$-1 x_2$	+1 x ₄	= 0
-1 x ₁	+2	$2 x_3 - 1 x_4$	= 0
+1 <i>x</i> ₁	—2	2 x ₃ +1 x ₄	= 0
+3 x ₁	+2 x ₂		$L x_5 = 0$
	_	$2x_3 - 1x_4 + 2$	$1 x_5 = 0$

place (P-) invariant: $C^{T} x = 0$ transition (T-) invariant: C y = 0

0: steady-state constraint

Search for **minimal nonnegative**, **nontrivial integer** solutions

<u>Minimal</u>: $\nexists z$: supp (z) ⊆ supp (u) and the largest common divisor of all non-zero entries of u is 1

Parikh vector: vector of firing frequencies

Thank you for joining!

Semi-quantitative modeling in systems biology: the Petri net formalism.

Prof. Dr. Ina Koch Goethe-Universität Frankfurt a. M.

e:Med Project Group Modeling of Disease Processes **Online Seminar Series** 07 December 2022 www.sys-med.de

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung